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Abstracts 
Association rule mining is one of the important concepts in data mining domain for analyzing customer’s 

data. The association rule mining is a process of finding correlation among the items involved in different transactions. 

Traditionally association rule mining is implemented horizontally. For this we have plenty of different algorithms in 

research like Apriori based, FP tree based so on. Recently we have a new method in association rule mining which 

generates vertical association rules. In horizontal association rule mining we read transaction items record by record 

basis and computes support of each frequent item or candidate item. We repeat this process to generate frequent item 

sets. The vertical association rule mining evaluates support frequency of each item column wise. For this it uses bitmap 

matrix that saves support sets of frequent item sets in memory which is used to calculate candidate item sets. The Item 

are read from Data set using BitMap Matrix format which uses 1 or 0 to represent the presence or absence of item in 

record. 

In our system it is proposed to combine both horizontal mining and vertical mining in generating association rules. 

The horizontal and vertical mining are implemented in parallel using multithreading concept. For this we propose a 

modified parallel multithreaded Apriori algorithm. The algorithm saves time and decreases memory space as the 

process is running because of bitmap representation of dataset and bitmap compression algorithms. 

 

Keywords:  Data mining, Association Rule Mining, Frequent item sets, Candidate item sets, Horizontal mining, 

Vertical mining, Apriori, Bitmap Apriori, Parallel multithreaded Apriori. 

Introduction  
sData Mining is an emerging concept which 

is powerful and promising and advances in data 

collection and storage technologies have led 

organizations to store vast amount of data pertaining 

to their businesses and extracting useful information 

from such vast amount of data is an important activity 

and is referred to as Data Mining or Knowledge 

Discovery in Databases (KDD) [1][2][3], which 

includes the key design aspects like Knowledge 

Discovery, Classification, Clustering and Association 

Rule Mining [1][2][3][5][6][7][8][9][10][11][12]. 

Association Analysis is the process of discovering the 

association rules attribute-value conditions that occur 

frequently together in the given data set which does by 

analyzing the data warehouses or the vast amount of 

data [5][9]. Association Rule Mining represents a data 

mining technique and its goal is to find the interesting 

association relationships among the large set of data 

which are used by the businesses in decision making 

processes their by getting the profits. The choice of 

making an algorithm is a task which is based on many 

conditions like accuracy, efficiency, security, 

scalability and number of database scans. Rule 

Support and confidence are the two measures of 

interestingness [5][9][10]. Strong association rules are 

the association rules which hold the minimum support 

value and minimum confidence value and are 

considered in the decision making processes. 

Association rule mining is best explained by one of its 

common applications Market Basket Analysis 

[1][2][5], where in retrieving the association between 

the items that the customers purchase. Many 

Algorithms are proposed for the association rule 

mining in finding the association rules and several 

optimizations are available in generation of 

association rules. This paper proposes the generation 

of association rules using horizontal apriori as well as 

vertical apriori in parallel combining both the 

approaches using the multithreading concept available 

in java [4]. 

This paper is organized as follows: Section 2 describes 

the Preliminaries. Section 3 describes Vertical Apriori 

Section 4 describes Multithreading Apriori Section 5 

describes Implementation Details. Section 6 presents 

experimental details and performance analysis. 

Section 7 presents conclusion. 
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Preliminaries 
Advances in the data collection and storage 

technologies has increased the sizes of the data sets 

drastically up to an extent that the algorithms which 

are used to analyze the data set need to choose depend 

upon the factor of scalability, which increases its 

execution time linearly with the increase in the size of 

the data set or the number of records with sustained 

capacity of main memory. Hence efficient scalable 

algorithms for data mining in very large data set are 

widely studied. 

A. Market Basket Analysis 

Finding frequent item sets plays an important role in 

data mining and is regarded as the first step in the 

generation of association rules. Generation of 

Association rules are mostly explained by the market 

basket analysis [1][2][5], retrieving the association 

between the items at the customer’s purchases. Here 

products or sets of items (item-sets) which occur in 

many transactions are found. 
Table 1.Transactional Data 

TID List of Item_IDs 

T10 I1 I2 I3 

T20 I1 I2 I3 I4 I5 

T30 I1 I3 I4 

T40 I1 I3 I4 I5 

T50 I1 I2 I3 I4 

T60 I2 I3 I4 I5 

T70 I2 I3 I4 

T80 I2 I4 I5 

T90 I2 I4 

T100 I2 I3 

T110 I3 I4 I5 

T120 I3 I4 

T130 I3 I5 

T140 I3 I4 I5 

T150 I2 I3 I4 I5 

 

Table 1 describes several transactions (T10, T20...) 

stored in relational database and the corresponding 

column mentions the list of item ids for the particular 

transaction. Frequent sets are those sets whose support 

is above the user defined minimum support. In 

Association rule mining the minimum support and the 

minimum confidence are the two measures of interest 

and those rules which satisfies the user defined 

minimum support and confidence values are 

considered as strong and are considered in decision 

making process. The Market Basket Analysis plays 

important role in understanding customer purchasing 

interests and behavior   which helps in increasing 

company product sales. 

 

B. Apriori Algorithm 

A set of items is refereed as itemset. An itemset that 

contains k items is a k-itemset. The occurrence 

frequency of an itemset is the number of transactions 

that contain the itemset. This is known as frequency or 

support count or count. If the support count of an 

itemset satisfies the user defined minimum support 

then the item set is frequent item set. Apriori algorithm 

[1][2][3][5][9][10] proceeds by first by finding all the 

frequent itemsets and then generating the strong 

association rules by considering the minimum support 

and confidence measures specified by the user. 

Finding the frequent itemsets among the given 

transactional data is again a two step process, first the 

formation of candidates (candidates Generation) in 

which the candidate frequent itemsets are generated 

and counting of the candidates (candidate Counting) in 

which the generated candidate itemsets count is 

calculated from the transactional data and only those 

candidate itemsets are considered as frequent itemsets 

which satisfies the user specified minimum support 

[5][9]. This algorithm finds all the i-frequent element 

itemsets at ith-stage. 

During the 1st phase or stage algorithm finds the 1-

frequent element itemsets by calcuting the support of 

the itemsets from the transactional database. Thus, 

after the first phase all frequent 1-element sets are 

known. However, Apriori reduces the number of sets 

of candidate sifting - a priori - those candidates who 

may not be frequent, based on information received at 

previous stages of the information on which of the sets 

are the most abundant.  Screenings are based on the 

simple assumption that if the set is frequent, all its 

subsets must also be frequent. Thus, before the 

counting of candidates step algorithm can reject any 

candidate set, a subset of which is not frequent. This 

process is continued until the number of frequent n-

item-sets becomes zero, where n determines the no. of 

children in the item-set [2][5]. 

Consider the database presented in Table 1.  Suppose 

that the minimum support count threshold is 5. That is, 

to be a frequent item-set, there should be at least two 

transactions, consisted of the particular item-set. In the 

first stage, all the products individually are sets of 

candidates and counted during the counting step, the 

candidate.  At the second stage, the candidate may be 

only a couple of items, each of which is frequently 

encountered. For example, initially all the sets of 

single items ({I1}, {I2}, {I3}, {I4} and {I5}) have a 

support count of 5, 9, 13, 12, and 8 respectively. So 

initially all five items become frequent item-sets. 

Thus, the second stage of the algorithm will form the 

following list of sets of candidates. Table 2 shows the 

item sets along with their support counts. Now 
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frequent 2-item- sets are {I1, I3}, {I2, I3}, {I2, I4}, 

{I3, I4}, {I3, I5} and {I4, I5} as the other item-sets 

don't have the minimum support count. 
Table 2. Itemsets and the support counts 

Itemset Sup. Count 

{I1, I2} 3 

{I1, I3} 5 

{I1, I4} 4 

{I1, I5} 2 

{I2, I3} 7 

{I2, I4} 6 

{I2, I5} 4 

{I3, I4} 10 

{I3, I5} 7 

{I4, I5} 7 

 

Likewise this process is continued until the no of 

frequent n-item-sets become zero, where n determines 

the no. of children in the item-set.  Apriori counts not 

only the provision of all frequent sets, but also 

ensuring those sets of candidates, which could not be 

discarded a priori.  

C. Algorithm Optimizations 

Many optimizations to the primary data mining 

algorithms are proposed over the time. They focus on 

a narrow sub set of datasets or cater the mining of the 

data broadly.  

1) Pruning  

In this Pruning techniques are used to reduce the size 

of candidate set which is an optimization [6]. Pruning 

strategy for the algorithm is based on a characteristic: 

a frequent item-set is a set, if and only if all its subsets 

are frequent.  

2) Dynamic hashing and pruning  

A hash based algorithm (DHP) [7], which generates 

candidate large itemsets efficiently, while reducing the 

size of the transaction data base. Number of candidate 

itemsets generated by DHP is smaller than that 

generated using existing algorithms, making it 

efficient for large itemsets, specifically for the large 2-

itemsets.  

3) Parallel Data mining  

DHP is extended into a parallel data mining algorithm, 

facilitating parallel generation of the candidate 

Itemsets and parallel determination of large itemsets 

[8]. 

4) Transaction Reduction  

In this algorithm we reduce the number of transactions 

scanned in the future iterations [9][10]. A transaction 

that does not contain any frequent k-itemsets can not 

contain any frequent (K +1) itemsets, hence can be 

removed. 

5) Partition  

In this Optimization technique Partition-based highly 

parallel algorithm [11], which logically divides the 

data base into several disjoint blocks? Each considered 

separately a sub- block and it generates all the frequent 

sets. The generated frequency of collection is used to 

generate all possible frequent sets, and followed by the 

final calculation of the degree of support of these 

itemsets. Sub-block size is chosen to allow each sub-

block be placed in the main memory, each stage 

scanned only once. This algorithm is highly parallel, 

and can be allocated to each sub-block of a processor 

that generates a frequency set.  Frequency set is 

resulting, after the end of each cycle. The processor to 

generate the overall communication between the 

candidate k-itemsets.  Usually here the communication 

process is a major bottleneck in algorithm execution 

time; while on the other hand, each individual 

processor generates frequent set time is also a 

bottleneck. Other methods are shared between 

multiple processors in a hash tree to generate frequent 

sets.  

6) Sampling  

A subset of the sample is taken for mining in the 

sampling based mining techniques. In which the rules 

are produced with the first extracted sample from the 

whole dataset [12]. The remaining of the dataset is 

used to authenticate the dataset that is chosen. 

Sampling based algorithms significantly reduced the 

I/O costs, nevertheless with inaccurate results often 

and distortions in the data, known as data-skew.  

 

Vertical data mining 
Vertical data mining Apriori algorithm [1] 

mines frequent patterns from a horizontal data format 

which represents the items categorized into particular 

transactions, where vertical data format represents 

data as transactions categorized into particular items. 

Hence, for a particular item, there is a set of 

corresponding transaction ids. Instead of horizontal 

data format, Apriori can be extended to use vertical 

data format for efficient mining. Table III shows the 

transactional data represented in Table I, in the vertical 

format. As can be seen from the Table 3, the vertical 

format data mining only has to parse the dataset once 

to get the itemsets. For the itemset generation from the 

2nd itemset, it only needs to refer the previous itemset 

[1]. This eliminates the need to parse through the 

dataset each time to count the frequency of itemsets, 

for each round. Hence, relative to the algorithms 

developed for the use on databases with the horizontal 

layout of data, the algorithms developed for the 

vertical representation tend to be more optimal.  
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Table 3. Transactional data represented in the 

Vertical Format 

Item 

ID 
List of TIDs 

Support 

Count 

I1 T10, T20, T30, T40, T50 5 

I2 
T10, T20, T50, T60, T70, T80, T90, 

T100, T150 
9 

I3 

T10, T20, T30, T40, T50, T60, T70, 

T100, T110, T120, T130, T140, 

T150 

13 

I4 
T20, T30, T40, T50, T60, T70, T80, 

T90, T110, T120, T140, T150 
12 

I5 
T20, T40, T60, T80, T110, T130, 

T140, T150 
8 

 

As the minimum support specified by the user is 5 all 

the 1-itemset are frequent and now consider Table 3 in 

order to calculate the 2-candiadate itemset first then 

pruning based on the support gives us the 2-frequent 

itemset without scanning the databases again and 

again which reduces the number of database scan’s 

required in order to calculate the frequent item sets and 

this process is continued until the no of frequent n-

item-sets become zero. This optimization reduces the 

number of database scans which also reduces the 

amount of time required to calculate the frequent item 

sets and correspondingly reduces the amount of space 

required in order to find the frequent item sets and their 

by improves the efficiency of the algorithm. 

 

Multithreaded apriori  
Java provides built-in support for 

multithreaded programming [4] . A multithreaded 

program contains two or more parts that can run 

concurrently. Each part of such a program is called a 

thread, and each thread defines a separate path of 

execution. Thus, multithreading is a specialized form 

of multitasking. However, there are two distinct types 

of multitasking: process- based and thread-based. It is 

important to understand the difference between the 

two. Process-based multitasking is the more familiar 

form. A process is, in essence, a program that is 

executing. Thus, process-based multitasking is the 

feature that allows your computer to run two or more 

programs concurrently. For example, process-based 

multitasking enables you to run the Java compiler at 

the same time that you are using at text editor. In 

process- based multitasking, a program is the smallest 

unit of code that can be dispatched by the scheduler. 

In a thread based multi tasking environment, the thread 

is the smallest unit of dispatchable code. This means 

that a single program can perform two or more tasks 

simultaneously. For instance, a text editor can format 

text at the same time that it is printing, as long as these 

two actions are being performed by two separate 

threads. Thus, process-based multitasking deals with 

the “big picture,” and thread-based multitasking 

handles the details.  

Multitasking threads require less overhead than 

multitasking processes. Processes are heavy weight 

tasks that require their own separate address spaces. 

Inter process communication is expensive and limited. 

Context switching from one process to another is also 

costly. Threads, on the other hand, are lightweight. 

They share the same address space and cooperatively 

share the same heavy weight process. Inter thread 

communication is inexpensive, and context switching 

from one thread to the next is low cost. While Java 

programs make use of process- based multitasking 

environments, process-based multitasking is not under 

the control of Java. However, multithreaded 

multitasking is. Multithreading enables you to write 

very efficient programs that make maximum use of the 

CPU, because idle time can be kept to a minimum. 

This is especially important for the interactive, 

networked environment in which Java operates, 

because idle time is common.  

The Java run-time system depends on threads for 

many things, and all the class libraries are designed 

with multithreading in mind. In fact, Java uses threads 

to enable the entire environment to be asynchronous. 

This helps reduce inefficiency by preventing the waste 

of CPU cycles. The value of a multithreaded 

environment is best understood in contrast to its 

counterpart. Single-threaded systems use an approach 

called an event loop with polling. In this model, a 

single thread of control runs in an infinite loop, polling 

a single event queue to decide what to do next. Once 

this polling mechanism returns with, say, a signal that 

a network file is ready to be read, then the event loop 

dispatches control to the appropriate event handler. 

Until this event handler returns, nothing else can 

happen in the system. This wastes CPU time. It can 

also result in one part of a program dominating the 

system and preventing any other events from being 

processed. In general, in a singled-threaded 

environment, when a thread blocks (that is, suspends 

execution) because it is waiting for some resource, the 

entire program stops running. The benefit of Java’s 

multithreading is that the main loop/polling 

mechanism is eliminated. One thread can pause 

without stopping other parts of your program. For 
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example, the idle time created when a thread reads data 

from a network or waits for user input can be utilized 

elsewhere. Multithreading allows animation loops to 

sleep for a second between each frame without causing 

the whole system to pause. When a thread blocks in a 

Java program, only the single thread that is blocked 

pauses. All other threads continue to run. Threads exist 

in several states. A thread can be running. It can be 

ready to run as soon as it gets CPU time. A running 

thread can be suspended, which temporarily suspends 

its activity. A suspended thread can then be resumed, 

allowing it to pick up where it left off. A thread can be 

blocked when waiting for a resource. At any time, a 

thread can be terminated, which halts its execution 

immediately. Once terminated, a thread cannot be 

resumed. 

In this approach we are combining the both the 

horizontal association rule mining using apriori as well 

as the vertical association rule mining using apriori 

algorithm in order to find the frequent itemset their by 

finding the association rules running them each as 

thread and by multithreading.  

 

Implementation details 
In this section, we analyze the performance 

of our parallel Multithreaded Apriori Algorithm for 

vertical Association rule mining for mining frequent 

itemsets and their by generating the association rules. 

The algorithms were implemented in java language. 

Swing framework is used for designing GUI. We have 

placed transactional data records in data sets. The MS 

Access data base is used for managing the 

performance results. 

 

Experimental results 
In order to evaluate the performance of our 

proposed algorithm, we have conducted experiments 

on a PC (CPU: Intel(R) Core2Duo, 3.16GHz) with 

4GByte of main memory running Windows XP. We 

have used java Swing to design front end, java libraries 

to construct code for building association rule 

generation system. We also used JFree Chart a third 

party library product for generating the charts for 

showing the performance analysis of algorithms. 

The following shows the results of Horizontal 

Association Rule Mining Using Apriori  

 
Fig 6.1 Results of Horizontal Association Rule Mining 

Using Apriori 

The following shows the results of Vertical Association 

Rule Mining Using Apriori 

 
Fig 6.2 Results of Vertical Association Rule Mining 

Using Apriori 

The following shows the results of Horizontal Association 

Rule Mining and Vertical Association Rule Mining Using 

Apriori. 
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The following shows the Analysis of Time complexity 

when comparing Horizontal and Vertical Apriori. 

Fig 6.3 Analysis of Time complexity for Horizontal and 

Vertical Apriori. 

 
Fig 6.4 Analysis of Time complexity for Horizontal and 

Vertical Apriori. 

The following shows the Analysis of Space 

complexity when comparing Horizontal and Vertical 

Apriori. 

 
Fig 6.5 Analysis of Space Complexity for Horizontal and 

Vertical Apriori 

 
Fig 6.6 Analysis of Space Complexity for Horizontal and 

Vertical Apriori 

 

Conclusions 
In this paper, we proposed a new technique 

for mining Frequent Item Sets that uses vertical 

Association rule mining with Bit Map Matrix. This 

Technique, we compare with Horizontal Apriori Our 

approach reduces the total process and also takes less 

time , less memory.  
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