
[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[659]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Apriori Algorithm for Vertical Association Rule Mining

Mohammed Karimuddin*, M.Prudhvi Ravi Raja Reddy

*Final M.Tech, Dept of CSE, Sri Aditya Engineering College, Surampalem, Kakinada, India

Assistant Professor, Dept of CSE, Sri Aditya Engineering College, Surampalem, Kakinada, India

karim.java2@gmail.com

Abstracts
Association rule mining is one of the important concepts in data mining domain for analyzing customer’s

data. The association rule mining is a process of finding correlation among the items involved in different transactions.

Traditionally association rule mining is implemented horizontally. For this we have plenty of different algorithms in

research like Apriori based, FP tree based so on. Recently we have a new method in association rule mining which

generates vertical association rules. In horizontal association rule mining we read transaction items record by record

basis and computes support of each frequent item or candidate item. We repeat this process to generate frequent item

sets. The vertical association rule mining evaluates support frequency of each item column wise. For this it uses bitmap

matrix that saves support sets of frequent item sets in memory which is used to calculate candidate item sets. The Item

are read from Data set using BitMap Matrix format which uses 1 or 0 to represent the presence or absence of item in

record.

In our system it is proposed to combine both horizontal mining and vertical mining in generating association rules.

The horizontal and vertical mining are implemented in parallel using multithreading concept. For this we propose a

modified parallel multithreaded Apriori algorithm. The algorithm saves time and decreases memory space as the

process is running because of bitmap representation of dataset and bitmap compression algorithms.

Keywords: Data mining, Association Rule Mining, Frequent item sets, Candidate item sets, Horizontal mining,

Vertical mining, Apriori, Bitmap Apriori, Parallel multithreaded Apriori.

Introduction
sData Mining is an emerging concept which

is powerful and promising and advances in data

collection and storage technologies have led

organizations to store vast amount of data pertaining

to their businesses and extracting useful information

from such vast amount of data is an important activity

and is referred to as Data Mining or Knowledge

Discovery in Databases (KDD) [1][2][3], which

includes the key design aspects like Knowledge

Discovery, Classification, Clustering and Association

Rule Mining [1][2][3][5][6][7][8][9][10][11][12].

Association Analysis is the process of discovering the

association rules attribute-value conditions that occur

frequently together in the given data set which does by

analyzing the data warehouses or the vast amount of

data [5][9]. Association Rule Mining represents a data

mining technique and its goal is to find the interesting

association relationships among the large set of data

which are used by the businesses in decision making

processes their by getting the profits. The choice of

making an algorithm is a task which is based on many

conditions like accuracy, efficiency, security,

scalability and number of database scans. Rule

Support and confidence are the two measures of

interestingness [5][9][10]. Strong association rules are

the association rules which hold the minimum support

value and minimum confidence value and are

considered in the decision making processes.

Association rule mining is best explained by one of its

common applications Market Basket Analysis

[1][2][5], where in retrieving the association between

the items that the customers purchase. Many

Algorithms are proposed for the association rule

mining in finding the association rules and several

optimizations are available in generation of

association rules. This paper proposes the generation

of association rules using horizontal apriori as well as

vertical apriori in parallel combining both the

approaches using the multithreading concept available

in java [4].

This paper is organized as follows: Section 2 describes

the Preliminaries. Section 3 describes Vertical Apriori

Section 4 describes Multithreading Apriori Section 5

describes Implementation Details. Section 6 presents

experimental details and performance analysis.

Section 7 presents conclusion.

http://www.ijesrt.com/
karim.java2@gmail.com

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[660]

Preliminaries
Advances in the data collection and storage

technologies has increased the sizes of the data sets

drastically up to an extent that the algorithms which

are used to analyze the data set need to choose depend

upon the factor of scalability, which increases its

execution time linearly with the increase in the size of

the data set or the number of records with sustained

capacity of main memory. Hence efficient scalable

algorithms for data mining in very large data set are

widely studied.

A. Market Basket Analysis

Finding frequent item sets plays an important role in

data mining and is regarded as the first step in the

generation of association rules. Generation of

Association rules are mostly explained by the market

basket analysis [1][2][5], retrieving the association

between the items at the customer’s purchases. Here

products or sets of items (item-sets) which occur in

many transactions are found.
Table 1.Transactional Data

TID List of Item_IDs

T10 I1 I2 I3

T20 I1 I2 I3 I4 I5

T30 I1 I3 I4

T40 I1 I3 I4 I5

T50 I1 I2 I3 I4

T60 I2 I3 I4 I5

T70 I2 I3 I4

T80 I2 I4 I5

T90 I2 I4

T100 I2 I3

T110 I3 I4 I5

T120 I3 I4

T130 I3 I5

T140 I3 I4 I5

T150 I2 I3 I4 I5

Table 1 describes several transactions (T10, T20...)

stored in relational database and the corresponding

column mentions the list of item ids for the particular

transaction. Frequent sets are those sets whose support

is above the user defined minimum support. In

Association rule mining the minimum support and the

minimum confidence are the two measures of interest

and those rules which satisfies the user defined

minimum support and confidence values are

considered as strong and are considered in decision

making process. The Market Basket Analysis plays

important role in understanding customer purchasing

interests and behavior which helps in increasing

company product sales.

B. Apriori Algorithm

A set of items is refereed as itemset. An itemset that

contains k items is a k-itemset. The occurrence

frequency of an itemset is the number of transactions

that contain the itemset. This is known as frequency or

support count or count. If the support count of an

itemset satisfies the user defined minimum support

then the item set is frequent item set. Apriori algorithm

[1][2][3][5][9][10] proceeds by first by finding all the

frequent itemsets and then generating the strong

association rules by considering the minimum support

and confidence measures specified by the user.

Finding the frequent itemsets among the given

transactional data is again a two step process, first the

formation of candidates (candidates Generation) in

which the candidate frequent itemsets are generated

and counting of the candidates (candidate Counting) in

which the generated candidate itemsets count is

calculated from the transactional data and only those

candidate itemsets are considered as frequent itemsets

which satisfies the user specified minimum support

[5][9]. This algorithm finds all the i-frequent element

itemsets at ith-stage.

During the 1st phase or stage algorithm finds the 1-

frequent element itemsets by calcuting the support of

the itemsets from the transactional database. Thus,

after the first phase all frequent 1-element sets are

known. However, Apriori reduces the number of sets

of candidate sifting - a priori - those candidates who

may not be frequent, based on information received at

previous stages of the information on which of the sets

are the most abundant. Screenings are based on the

simple assumption that if the set is frequent, all its

subsets must also be frequent. Thus, before the

counting of candidates step algorithm can reject any

candidate set, a subset of which is not frequent. This

process is continued until the number of frequent n-

item-sets becomes zero, where n determines the no. of

children in the item-set [2][5].

Consider the database presented in Table 1. Suppose

that the minimum support count threshold is 5. That is,

to be a frequent item-set, there should be at least two

transactions, consisted of the particular item-set. In the

first stage, all the products individually are sets of

candidates and counted during the counting step, the

candidate. At the second stage, the candidate may be

only a couple of items, each of which is frequently

encountered. For example, initially all the sets of

single items ({I1}, {I2}, {I3}, {I4} and {I5}) have a

support count of 5, 9, 13, 12, and 8 respectively. So

initially all five items become frequent item-sets.

Thus, the second stage of the algorithm will form the

following list of sets of candidates. Table 2 shows the

item sets along with their support counts. Now

http://www.ijesrt.com/

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[661]

frequent 2-item- sets are {I1, I3}, {I2, I3}, {I2, I4},

{I3, I4}, {I3, I5} and {I4, I5} as the other item-sets

don't have the minimum support count.
Table 2. Itemsets and the support counts

Itemset Sup. Count

{I1, I2} 3

{I1, I3} 5

{I1, I4} 4

{I1, I5} 2

{I2, I3} 7

{I2, I4} 6

{I2, I5} 4

{I3, I4} 10

{I3, I5} 7

{I4, I5} 7

Likewise this process is continued until the no of

frequent n-item-sets become zero, where n determines

the no. of children in the item-set. Apriori counts not

only the provision of all frequent sets, but also

ensuring those sets of candidates, which could not be

discarded a priori.

C. Algorithm Optimizations

Many optimizations to the primary data mining

algorithms are proposed over the time. They focus on

a narrow sub set of datasets or cater the mining of the

data broadly.

1) Pruning

In this Pruning techniques are used to reduce the size

of candidate set which is an optimization [6]. Pruning

strategy for the algorithm is based on a characteristic:

a frequent item-set is a set, if and only if all its subsets

are frequent.

2) Dynamic hashing and pruning

A hash based algorithm (DHP) [7], which generates

candidate large itemsets efficiently, while reducing the

size of the transaction data base. Number of candidate

itemsets generated by DHP is smaller than that

generated using existing algorithms, making it

efficient for large itemsets, specifically for the large 2-

itemsets.

3) Parallel Data mining

DHP is extended into a parallel data mining algorithm,

facilitating parallel generation of the candidate

Itemsets and parallel determination of large itemsets

[8].

4) Transaction Reduction

In this algorithm we reduce the number of transactions

scanned in the future iterations [9][10]. A transaction

that does not contain any frequent k-itemsets can not

contain any frequent (K +1) itemsets, hence can be

removed.

5) Partition

In this Optimization technique Partition-based highly

parallel algorithm [11], which logically divides the

data base into several disjoint blocks? Each considered

separately a sub- block and it generates all the frequent

sets. The generated frequency of collection is used to

generate all possible frequent sets, and followed by the

final calculation of the degree of support of these

itemsets. Sub-block size is chosen to allow each sub-

block be placed in the main memory, each stage

scanned only once. This algorithm is highly parallel,

and can be allocated to each sub-block of a processor

that generates a frequency set. Frequency set is

resulting, after the end of each cycle. The processor to

generate the overall communication between the

candidate k-itemsets. Usually here the communication

process is a major bottleneck in algorithm execution

time; while on the other hand, each individual

processor generates frequent set time is also a

bottleneck. Other methods are shared between

multiple processors in a hash tree to generate frequent

sets.

6) Sampling

A subset of the sample is taken for mining in the

sampling based mining techniques. In which the rules

are produced with the first extracted sample from the

whole dataset [12]. The remaining of the dataset is

used to authenticate the dataset that is chosen.

Sampling based algorithms significantly reduced the

I/O costs, nevertheless with inaccurate results often

and distortions in the data, known as data-skew.

Vertical data mining
Vertical data mining Apriori algorithm [1]

mines frequent patterns from a horizontal data format

which represents the items categorized into particular

transactions, where vertical data format represents

data as transactions categorized into particular items.

Hence, for a particular item, there is a set of

corresponding transaction ids. Instead of horizontal

data format, Apriori can be extended to use vertical

data format for efficient mining. Table III shows the

transactional data represented in Table I, in the vertical

format. As can be seen from the Table 3, the vertical

format data mining only has to parse the dataset once

to get the itemsets. For the itemset generation from the

2nd itemset, it only needs to refer the previous itemset

[1]. This eliminates the need to parse through the

dataset each time to count the frequency of itemsets,

for each round. Hence, relative to the algorithms

developed for the use on databases with the horizontal

layout of data, the algorithms developed for the

vertical representation tend to be more optimal.

http://www.ijesrt.com/

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[662]

Table 3. Transactional data represented in the

Vertical Format

Item

ID
List of TIDs

Support

Count

I1 T10, T20, T30, T40, T50 5

I2
T10, T20, T50, T60, T70, T80, T90,

T100, T150
9

I3

T10, T20, T30, T40, T50, T60, T70,

T100, T110, T120, T130, T140,

T150

13

I4
T20, T30, T40, T50, T60, T70, T80,

T90, T110, T120, T140, T150
12

I5
T20, T40, T60, T80, T110, T130,

T140, T150
8

As the minimum support specified by the user is 5 all

the 1-itemset are frequent and now consider Table 3 in

order to calculate the 2-candiadate itemset first then

pruning based on the support gives us the 2-frequent

itemset without scanning the databases again and

again which reduces the number of database scan’s

required in order to calculate the frequent item sets and

this process is continued until the no of frequent n-

item-sets become zero. This optimization reduces the

number of database scans which also reduces the

amount of time required to calculate the frequent item

sets and correspondingly reduces the amount of space

required in order to find the frequent item sets and their

by improves the efficiency of the algorithm.

Multithreaded apriori
Java provides built-in support for

multithreaded programming [4] . A multithreaded

program contains two or more parts that can run

concurrently. Each part of such a program is called a

thread, and each thread defines a separate path of

execution. Thus, multithreading is a specialized form

of multitasking. However, there are two distinct types

of multitasking: process- based and thread-based. It is

important to understand the difference between the

two. Process-based multitasking is the more familiar

form. A process is, in essence, a program that is

executing. Thus, process-based multitasking is the

feature that allows your computer to run two or more

programs concurrently. For example, process-based

multitasking enables you to run the Java compiler at

the same time that you are using at text editor. In

process- based multitasking, a program is the smallest

unit of code that can be dispatched by the scheduler.

In a thread based multi tasking environment, the thread

is the smallest unit of dispatchable code. This means

that a single program can perform two or more tasks

simultaneously. For instance, a text editor can format

text at the same time that it is printing, as long as these

two actions are being performed by two separate

threads. Thus, process-based multitasking deals with

the “big picture,” and thread-based multitasking

handles the details.

Multitasking threads require less overhead than

multitasking processes. Processes are heavy weight

tasks that require their own separate address spaces.

Inter process communication is expensive and limited.

Context switching from one process to another is also

costly. Threads, on the other hand, are lightweight.

They share the same address space and cooperatively

share the same heavy weight process. Inter thread

communication is inexpensive, and context switching

from one thread to the next is low cost. While Java

programs make use of process- based multitasking

environments, process-based multitasking is not under

the control of Java. However, multithreaded

multitasking is. Multithreading enables you to write

very efficient programs that make maximum use of the

CPU, because idle time can be kept to a minimum.

This is especially important for the interactive,

networked environment in which Java operates,

because idle time is common.

The Java run-time system depends on threads for

many things, and all the class libraries are designed

with multithreading in mind. In fact, Java uses threads

to enable the entire environment to be asynchronous.

This helps reduce inefficiency by preventing the waste

of CPU cycles. The value of a multithreaded

environment is best understood in contrast to its

counterpart. Single-threaded systems use an approach

called an event loop with polling. In this model, a

single thread of control runs in an infinite loop, polling

a single event queue to decide what to do next. Once

this polling mechanism returns with, say, a signal that

a network file is ready to be read, then the event loop

dispatches control to the appropriate event handler.

Until this event handler returns, nothing else can

happen in the system. This wastes CPU time. It can

also result in one part of a program dominating the

system and preventing any other events from being

processed. In general, in a singled-threaded

environment, when a thread blocks (that is, suspends

execution) because it is waiting for some resource, the

entire program stops running. The benefit of Java’s

multithreading is that the main loop/polling

mechanism is eliminated. One thread can pause

without stopping other parts of your program. For

http://www.ijesrt.com/

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[663]

example, the idle time created when a thread reads data

from a network or waits for user input can be utilized

elsewhere. Multithreading allows animation loops to

sleep for a second between each frame without causing

the whole system to pause. When a thread blocks in a

Java program, only the single thread that is blocked

pauses. All other threads continue to run. Threads exist

in several states. A thread can be running. It can be

ready to run as soon as it gets CPU time. A running

thread can be suspended, which temporarily suspends

its activity. A suspended thread can then be resumed,

allowing it to pick up where it left off. A thread can be

blocked when waiting for a resource. At any time, a

thread can be terminated, which halts its execution

immediately. Once terminated, a thread cannot be

resumed.

In this approach we are combining the both the

horizontal association rule mining using apriori as well

as the vertical association rule mining using apriori

algorithm in order to find the frequent itemset their by

finding the association rules running them each as

thread and by multithreading.

Implementation details
In this section, we analyze the performance

of our parallel Multithreaded Apriori Algorithm for

vertical Association rule mining for mining frequent

itemsets and their by generating the association rules.

The algorithms were implemented in java language.

Swing framework is used for designing GUI. We have

placed transactional data records in data sets. The MS

Access data base is used for managing the

performance results.

Experimental results
In order to evaluate the performance of our

proposed algorithm, we have conducted experiments

on a PC (CPU: Intel(R) Core2Duo, 3.16GHz) with

4GByte of main memory running Windows XP. We

have used java Swing to design front end, java libraries

to construct code for building association rule

generation system. We also used JFree Chart a third

party library product for generating the charts for

showing the performance analysis of algorithms.

The following shows the results of Horizontal

Association Rule Mining Using Apriori

Fig 6.1 Results of Horizontal Association Rule Mining

Using Apriori

The following shows the results of Vertical Association

Rule Mining Using Apriori

Fig 6.2 Results of Vertical Association Rule Mining

Using Apriori

The following shows the results of Horizontal Association

Rule Mining and Vertical Association Rule Mining Using

Apriori.

http://www.ijesrt.com/

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[664]

The following shows the Analysis of Time complexity

when comparing Horizontal and Vertical Apriori.

Fig 6.3 Analysis of Time complexity for Horizontal and

Vertical Apriori.

Fig 6.4 Analysis of Time complexity for Horizontal and

Vertical Apriori.

The following shows the Analysis of Space

complexity when comparing Horizontal and Vertical

Apriori.

Fig 6.5 Analysis of Space Complexity for Horizontal and

Vertical Apriori

Fig 6.6 Analysis of Space Complexity for Horizontal and

Vertical Apriori

Conclusions
In this paper, we proposed a new technique

for mining Frequent Item Sets that uses vertical

Association rule mining with Bit Map Matrix. This

Technique, we compare with Horizontal Apriori Our

approach reduces the total process and also takes less

time , less memory.

References
1. “Horizontal Format Data Mining with

Extended Bitmaps”, Buddhika De Alwis1,

Supun Malinga2, Kathiravelu Pradeeban3,

Denis Weerasiri4, Shehan Perera,

International Journal of Computer

Information Systems and Industrial

Management Applications. ISSN 2150-7988

Volume 4 (2012) pp. 514–521

2. J. Han and M. Kamber. “Data mining:

Concepts and Techniques”, Morgan

Kaufman, San Francisco, CA,2001.

3. Arun K Pujari “Data Mining Techniques”

UniversityPress (India) Pvt. Ltd 2001

http://www.ijesrt.com/

[Karimuddin, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[665]

4. “Java.The.Complete.Reference”, Herbert

Schildt, McGrawHill, 7th.Edition.Dec.2006

5. R. Agrawal, and R. Srikant. “Fast algorithms

for mining association rules,” in Proceedings

of. 1994 Int. Conf. Very Large Databases

(VLDB'94), Sep. 1994.

6. H. Mannila, H. Toivonen, and A. Verkamo.

Efficient algorithm for discovering

association rules. AAAI Workshop on

Knowledge Discovery in Databases, pp 181-

192, Jul. 1994.

7. J.S. Park, M.S. Chen, and PS Yu. “An

effective hash-based algorithm for mining

association rules”. In Proceedings of ACM

SIGMOD International Conference on

Management of Data, pp 175-186, May 1995.

8. J.S. Park, M.S. Chen, and P.S. Yu. “Efficient

parallel data mining of association rules,” 4th

International Conference on Information and

Knowledge Management, Baltimore,

Maryland, Nov. 1995.

9. R. Agrawal, and R. Srikant. “Fast algorithms

for mining association rules,” in Proceedings

of. 1994 Int. Conf. Very Large Databases

(VLDB'94), Sep. 1994.

10. J. Han and Y. Fu. “Discovery of multiple-

level association rules from large databases,”

in Proceedings of. Int. Conf. Very Large

Databases (VLDB'95), pp 402-431, Sep.

1995.

11. A. Savasere, E. Omiecinski, and S. Navathe.

“An efficient algorithm for mining

association rules in large databases,” in

Proceedings of the 21st International

Conference on Very Large Database, pp 432-

443, Sep. 1995.

12. H. Toivonen. “Sampling large databases for

association rules,” in Proceedings of the 22nd

International Conference on Very Large

Database, Bombay, India, pp 134-145, Sep.

1996.

http://www.ijesrt.com/

